↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
reach_in_ggg(X, Y, Edges) → U1_ggg(X, Y, Edges, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U4_gg(X, H, L, member_in_gg(X, L))
U4_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_ggg(X, Y, Edges, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_ggg(X, Y, Edges)
reach_in_ggg(X, Z, Edges) → U2_ggg(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U5_ag(X, H, L, member1_in_ag(X, L))
U5_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_ggg(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → U3_ggg(X, Z, Edges, reach_in_ggg(Y, Z, Edges))
U3_ggg(X, Z, Edges, reach_out_ggg(Y, Z, Edges)) → reach_out_ggg(X, Z, Edges)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
reach_in_ggg(X, Y, Edges) → U1_ggg(X, Y, Edges, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U4_gg(X, H, L, member_in_gg(X, L))
U4_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_ggg(X, Y, Edges, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_ggg(X, Y, Edges)
reach_in_ggg(X, Z, Edges) → U2_ggg(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U5_ag(X, H, L, member1_in_ag(X, L))
U5_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_ggg(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → U3_ggg(X, Z, Edges, reach_in_ggg(Y, Z, Edges))
U3_ggg(X, Z, Edges, reach_out_ggg(Y, Z, Edges)) → reach_out_ggg(X, Z, Edges)
REACH_IN_GGG(X, Y, Edges) → U1_GGG(X, Y, Edges, member_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_GGG(X, Y, Edges) → MEMBER_IN_GG(.(X, .(Y, [])), Edges)
MEMBER_IN_GG(X, .(H, L)) → U4_GG(X, H, L, member_in_gg(X, L))
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
REACH_IN_GGG(X, Z, Edges) → U2_GGG(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
REACH_IN_GGG(X, Z, Edges) → MEMBER1_IN_AG(.(X, .(Y, [])), Edges)
MEMBER1_IN_AG(X, .(H, L)) → U5_AG(X, H, L, member1_in_ag(X, L))
MEMBER1_IN_AG(X, .(H, L)) → MEMBER1_IN_AG(X, L)
U2_GGG(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → U3_GGG(X, Z, Edges, reach_in_ggg(Y, Z, Edges))
U2_GGG(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → REACH_IN_GGG(Y, Z, Edges)
reach_in_ggg(X, Y, Edges) → U1_ggg(X, Y, Edges, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U4_gg(X, H, L, member_in_gg(X, L))
U4_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_ggg(X, Y, Edges, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_ggg(X, Y, Edges)
reach_in_ggg(X, Z, Edges) → U2_ggg(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U5_ag(X, H, L, member1_in_ag(X, L))
U5_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_ggg(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → U3_ggg(X, Z, Edges, reach_in_ggg(Y, Z, Edges))
U3_ggg(X, Z, Edges, reach_out_ggg(Y, Z, Edges)) → reach_out_ggg(X, Z, Edges)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
REACH_IN_GGG(X, Y, Edges) → U1_GGG(X, Y, Edges, member_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_GGG(X, Y, Edges) → MEMBER_IN_GG(.(X, .(Y, [])), Edges)
MEMBER_IN_GG(X, .(H, L)) → U4_GG(X, H, L, member_in_gg(X, L))
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
REACH_IN_GGG(X, Z, Edges) → U2_GGG(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
REACH_IN_GGG(X, Z, Edges) → MEMBER1_IN_AG(.(X, .(Y, [])), Edges)
MEMBER1_IN_AG(X, .(H, L)) → U5_AG(X, H, L, member1_in_ag(X, L))
MEMBER1_IN_AG(X, .(H, L)) → MEMBER1_IN_AG(X, L)
U2_GGG(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → U3_GGG(X, Z, Edges, reach_in_ggg(Y, Z, Edges))
U2_GGG(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → REACH_IN_GGG(Y, Z, Edges)
reach_in_ggg(X, Y, Edges) → U1_ggg(X, Y, Edges, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U4_gg(X, H, L, member_in_gg(X, L))
U4_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_ggg(X, Y, Edges, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_ggg(X, Y, Edges)
reach_in_ggg(X, Z, Edges) → U2_ggg(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U5_ag(X, H, L, member1_in_ag(X, L))
U5_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_ggg(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → U3_ggg(X, Z, Edges, reach_in_ggg(Y, Z, Edges))
U3_ggg(X, Z, Edges, reach_out_ggg(Y, Z, Edges)) → reach_out_ggg(X, Z, Edges)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
MEMBER1_IN_AG(X, .(H, L)) → MEMBER1_IN_AG(X, L)
reach_in_ggg(X, Y, Edges) → U1_ggg(X, Y, Edges, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U4_gg(X, H, L, member_in_gg(X, L))
U4_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_ggg(X, Y, Edges, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_ggg(X, Y, Edges)
reach_in_ggg(X, Z, Edges) → U2_ggg(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U5_ag(X, H, L, member1_in_ag(X, L))
U5_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_ggg(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → U3_ggg(X, Z, Edges, reach_in_ggg(Y, Z, Edges))
U3_ggg(X, Z, Edges, reach_out_ggg(Y, Z, Edges)) → reach_out_ggg(X, Z, Edges)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
MEMBER1_IN_AG(X, .(H, L)) → MEMBER1_IN_AG(X, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
MEMBER1_IN_AG(.(H, L)) → MEMBER1_IN_AG(L)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
reach_in_ggg(X, Y, Edges) → U1_ggg(X, Y, Edges, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U4_gg(X, H, L, member_in_gg(X, L))
U4_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_ggg(X, Y, Edges, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_ggg(X, Y, Edges)
reach_in_ggg(X, Z, Edges) → U2_ggg(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U5_ag(X, H, L, member1_in_ag(X, L))
U5_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_ggg(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → U3_ggg(X, Z, Edges, reach_in_ggg(Y, Z, Edges))
U3_ggg(X, Z, Edges, reach_out_ggg(Y, Z, Edges)) → reach_out_ggg(X, Z, Edges)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PrologToPiTRSProof
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
U2_GGG(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → REACH_IN_GGG(Y, Z, Edges)
REACH_IN_GGG(X, Z, Edges) → U2_GGG(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
reach_in_ggg(X, Y, Edges) → U1_ggg(X, Y, Edges, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U4_gg(X, H, L, member_in_gg(X, L))
U4_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_ggg(X, Y, Edges, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_ggg(X, Y, Edges)
reach_in_ggg(X, Z, Edges) → U2_ggg(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U5_ag(X, H, L, member1_in_ag(X, L))
U5_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_ggg(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → U3_ggg(X, Z, Edges, reach_in_ggg(Y, Z, Edges))
U3_ggg(X, Z, Edges, reach_out_ggg(Y, Z, Edges)) → reach_out_ggg(X, Z, Edges)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
U2_GGG(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → REACH_IN_GGG(Y, Z, Edges)
REACH_IN_GGG(X, Z, Edges) → U2_GGG(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U5_ag(X, H, L, member1_in_ag(X, L))
U5_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ PrologToPiTRSProof
REACH_IN_GGG(X, Z, Edges) → U2_GGG(Z, Edges, member1_in_ag(Edges))
U2_GGG(Z, Edges, member1_out_ag(.(X, .(Y, [])))) → REACH_IN_GGG(Y, Z, Edges)
member1_in_ag(.(H, L)) → member1_out_ag(H)
member1_in_ag(.(H, L)) → U5_ag(member1_in_ag(L))
U5_ag(member1_out_ag(X)) → member1_out_ag(X)
member1_in_ag(x0)
U5_ag(x0)
REACH_IN_GGG(y0, y1, .(x0, x1)) → U2_GGG(y1, .(x0, x1), member1_out_ag(x0))
REACH_IN_GGG(y0, y1, .(x0, x1)) → U2_GGG(y1, .(x0, x1), U5_ag(member1_in_ag(x1)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
REACH_IN_GGG(y0, y1, .(x0, x1)) → U2_GGG(y1, .(x0, x1), member1_out_ag(x0))
REACH_IN_GGG(y0, y1, .(x0, x1)) → U2_GGG(y1, .(x0, x1), U5_ag(member1_in_ag(x1)))
U2_GGG(Z, Edges, member1_out_ag(.(X, .(Y, [])))) → REACH_IN_GGG(Y, Z, Edges)
member1_in_ag(.(H, L)) → member1_out_ag(H)
member1_in_ag(.(H, L)) → U5_ag(member1_in_ag(L))
U5_ag(member1_out_ag(X)) → member1_out_ag(X)
member1_in_ag(x0)
U5_ag(x0)
U2_GGG(z1, .(z2, z3), member1_out_ag(.(x2, .(x3, [])))) → REACH_IN_GGG(x3, z1, .(z2, z3))
U2_GGG(z1, .(.(x2, .(x3, [])), z3), member1_out_ag(.(x2, .(x3, [])))) → REACH_IN_GGG(x3, z1, .(.(x2, .(x3, [])), z3))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ PrologToPiTRSProof
REACH_IN_GGG(y0, y1, .(x0, x1)) → U2_GGG(y1, .(x0, x1), member1_out_ag(x0))
U2_GGG(z1, .(z2, z3), member1_out_ag(.(x2, .(x3, [])))) → REACH_IN_GGG(x3, z1, .(z2, z3))
REACH_IN_GGG(y0, y1, .(x0, x1)) → U2_GGG(y1, .(x0, x1), U5_ag(member1_in_ag(x1)))
U2_GGG(z1, .(.(x2, .(x3, [])), z3), member1_out_ag(.(x2, .(x3, [])))) → REACH_IN_GGG(x3, z1, .(.(x2, .(x3, [])), z3))
member1_in_ag(.(H, L)) → member1_out_ag(H)
member1_in_ag(.(H, L)) → U5_ag(member1_in_ag(L))
U5_ag(member1_out_ag(X)) → member1_out_ag(X)
member1_in_ag(x0)
U5_ag(x0)
REACH_IN_GGG(x0, x1, .(.(y_3, .(y_4, [])), x3)) → U2_GGG(x1, .(.(y_3, .(y_4, [])), x3), member1_out_ag(.(y_3, .(y_4, []))))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ NonTerminationProof
↳ PrologToPiTRSProof
REACH_IN_GGG(y0, y1, .(x0, x1)) → U2_GGG(y1, .(x0, x1), U5_ag(member1_in_ag(x1)))
U2_GGG(z1, .(z2, z3), member1_out_ag(.(x2, .(x3, [])))) → REACH_IN_GGG(x3, z1, .(z2, z3))
U2_GGG(z1, .(.(x2, .(x3, [])), z3), member1_out_ag(.(x2, .(x3, [])))) → REACH_IN_GGG(x3, z1, .(.(x2, .(x3, [])), z3))
REACH_IN_GGG(x0, x1, .(.(y_3, .(y_4, [])), x3)) → U2_GGG(x1, .(.(y_3, .(y_4, [])), x3), member1_out_ag(.(y_3, .(y_4, []))))
member1_in_ag(.(H, L)) → member1_out_ag(H)
member1_in_ag(.(H, L)) → U5_ag(member1_in_ag(L))
U5_ag(member1_out_ag(X)) → member1_out_ag(X)
member1_in_ag(x0)
U5_ag(x0)
REACH_IN_GGG(y0, y1, .(x0, x1)) → U2_GGG(y1, .(x0, x1), U5_ag(member1_in_ag(x1)))
U2_GGG(z1, .(z2, z3), member1_out_ag(.(x2, .(x3, [])))) → REACH_IN_GGG(x3, z1, .(z2, z3))
U2_GGG(z1, .(.(x2, .(x3, [])), z3), member1_out_ag(.(x2, .(x3, [])))) → REACH_IN_GGG(x3, z1, .(.(x2, .(x3, [])), z3))
REACH_IN_GGG(x0, x1, .(.(y_3, .(y_4, [])), x3)) → U2_GGG(x1, .(.(y_3, .(y_4, [])), x3), member1_out_ag(.(y_3, .(y_4, []))))
member1_in_ag(.(H, L)) → member1_out_ag(H)
member1_in_ag(.(H, L)) → U5_ag(member1_in_ag(L))
U5_ag(member1_out_ag(X)) → member1_out_ag(X)
reach_in_ggg(X, Y, Edges) → U1_ggg(X, Y, Edges, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U4_gg(X, H, L, member_in_gg(X, L))
U4_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_ggg(X, Y, Edges, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_ggg(X, Y, Edges)
reach_in_ggg(X, Z, Edges) → U2_ggg(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U5_ag(X, H, L, member1_in_ag(X, L))
U5_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_ggg(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → U3_ggg(X, Z, Edges, reach_in_ggg(Y, Z, Edges))
U3_ggg(X, Z, Edges, reach_out_ggg(Y, Z, Edges)) → reach_out_ggg(X, Z, Edges)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
reach_in_ggg(X, Y, Edges) → U1_ggg(X, Y, Edges, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U4_gg(X, H, L, member_in_gg(X, L))
U4_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_ggg(X, Y, Edges, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_ggg(X, Y, Edges)
reach_in_ggg(X, Z, Edges) → U2_ggg(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U5_ag(X, H, L, member1_in_ag(X, L))
U5_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_ggg(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → U3_ggg(X, Z, Edges, reach_in_ggg(Y, Z, Edges))
U3_ggg(X, Z, Edges, reach_out_ggg(Y, Z, Edges)) → reach_out_ggg(X, Z, Edges)
REACH_IN_GGG(X, Y, Edges) → U1_GGG(X, Y, Edges, member_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_GGG(X, Y, Edges) → MEMBER_IN_GG(.(X, .(Y, [])), Edges)
MEMBER_IN_GG(X, .(H, L)) → U4_GG(X, H, L, member_in_gg(X, L))
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
REACH_IN_GGG(X, Z, Edges) → U2_GGG(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
REACH_IN_GGG(X, Z, Edges) → MEMBER1_IN_AG(.(X, .(Y, [])), Edges)
MEMBER1_IN_AG(X, .(H, L)) → U5_AG(X, H, L, member1_in_ag(X, L))
MEMBER1_IN_AG(X, .(H, L)) → MEMBER1_IN_AG(X, L)
U2_GGG(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → U3_GGG(X, Z, Edges, reach_in_ggg(Y, Z, Edges))
U2_GGG(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → REACH_IN_GGG(Y, Z, Edges)
reach_in_ggg(X, Y, Edges) → U1_ggg(X, Y, Edges, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U4_gg(X, H, L, member_in_gg(X, L))
U4_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_ggg(X, Y, Edges, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_ggg(X, Y, Edges)
reach_in_ggg(X, Z, Edges) → U2_ggg(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U5_ag(X, H, L, member1_in_ag(X, L))
U5_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_ggg(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → U3_ggg(X, Z, Edges, reach_in_ggg(Y, Z, Edges))
U3_ggg(X, Z, Edges, reach_out_ggg(Y, Z, Edges)) → reach_out_ggg(X, Z, Edges)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
REACH_IN_GGG(X, Y, Edges) → U1_GGG(X, Y, Edges, member_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_GGG(X, Y, Edges) → MEMBER_IN_GG(.(X, .(Y, [])), Edges)
MEMBER_IN_GG(X, .(H, L)) → U4_GG(X, H, L, member_in_gg(X, L))
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
REACH_IN_GGG(X, Z, Edges) → U2_GGG(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
REACH_IN_GGG(X, Z, Edges) → MEMBER1_IN_AG(.(X, .(Y, [])), Edges)
MEMBER1_IN_AG(X, .(H, L)) → U5_AG(X, H, L, member1_in_ag(X, L))
MEMBER1_IN_AG(X, .(H, L)) → MEMBER1_IN_AG(X, L)
U2_GGG(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → U3_GGG(X, Z, Edges, reach_in_ggg(Y, Z, Edges))
U2_GGG(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → REACH_IN_GGG(Y, Z, Edges)
reach_in_ggg(X, Y, Edges) → U1_ggg(X, Y, Edges, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U4_gg(X, H, L, member_in_gg(X, L))
U4_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_ggg(X, Y, Edges, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_ggg(X, Y, Edges)
reach_in_ggg(X, Z, Edges) → U2_ggg(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U5_ag(X, H, L, member1_in_ag(X, L))
U5_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_ggg(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → U3_ggg(X, Z, Edges, reach_in_ggg(Y, Z, Edges))
U3_ggg(X, Z, Edges, reach_out_ggg(Y, Z, Edges)) → reach_out_ggg(X, Z, Edges)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
MEMBER1_IN_AG(X, .(H, L)) → MEMBER1_IN_AG(X, L)
reach_in_ggg(X, Y, Edges) → U1_ggg(X, Y, Edges, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U4_gg(X, H, L, member_in_gg(X, L))
U4_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_ggg(X, Y, Edges, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_ggg(X, Y, Edges)
reach_in_ggg(X, Z, Edges) → U2_ggg(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U5_ag(X, H, L, member1_in_ag(X, L))
U5_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_ggg(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → U3_ggg(X, Z, Edges, reach_in_ggg(Y, Z, Edges))
U3_ggg(X, Z, Edges, reach_out_ggg(Y, Z, Edges)) → reach_out_ggg(X, Z, Edges)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
MEMBER1_IN_AG(X, .(H, L)) → MEMBER1_IN_AG(X, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
MEMBER1_IN_AG(.(H, L)) → MEMBER1_IN_AG(L)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
reach_in_ggg(X, Y, Edges) → U1_ggg(X, Y, Edges, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U4_gg(X, H, L, member_in_gg(X, L))
U4_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_ggg(X, Y, Edges, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_ggg(X, Y, Edges)
reach_in_ggg(X, Z, Edges) → U2_ggg(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U5_ag(X, H, L, member1_in_ag(X, L))
U5_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_ggg(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → U3_ggg(X, Z, Edges, reach_in_ggg(Y, Z, Edges))
U3_ggg(X, Z, Edges, reach_out_ggg(Y, Z, Edges)) → reach_out_ggg(X, Z, Edges)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
U2_GGG(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → REACH_IN_GGG(Y, Z, Edges)
REACH_IN_GGG(X, Z, Edges) → U2_GGG(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
reach_in_ggg(X, Y, Edges) → U1_ggg(X, Y, Edges, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U4_gg(X, H, L, member_in_gg(X, L))
U4_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_ggg(X, Y, Edges, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_ggg(X, Y, Edges)
reach_in_ggg(X, Z, Edges) → U2_ggg(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U5_ag(X, H, L, member1_in_ag(X, L))
U5_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_ggg(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → U3_ggg(X, Z, Edges, reach_in_ggg(Y, Z, Edges))
U3_ggg(X, Z, Edges, reach_out_ggg(Y, Z, Edges)) → reach_out_ggg(X, Z, Edges)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
U2_GGG(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → REACH_IN_GGG(Y, Z, Edges)
REACH_IN_GGG(X, Z, Edges) → U2_GGG(X, Z, Edges, member1_in_ag(.(X, .(Y, [])), Edges))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U5_ag(X, H, L, member1_in_ag(X, L))
U5_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
U2_GGG(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → REACH_IN_GGG(Y, Z, Edges)
REACH_IN_GGG(X, Z, Edges) → U2_GGG(X, Z, Edges, member1_in_ag(Edges))
member1_in_ag(.(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(.(H, L)) → U5_ag(H, L, member1_in_ag(L))
U5_ag(H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
member1_in_ag(x0)
U5_ag(x0, x1, x2)
REACH_IN_GGG(y0, y1, .(x0, x1)) → U2_GGG(y0, y1, .(x0, x1), U5_ag(x0, x1, member1_in_ag(x1)))
REACH_IN_GGG(y0, y1, .(x0, x1)) → U2_GGG(y0, y1, .(x0, x1), member1_out_ag(x0, .(x0, x1)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
U2_GGG(X, Z, Edges, member1_out_ag(.(X, .(Y, [])), Edges)) → REACH_IN_GGG(Y, Z, Edges)
REACH_IN_GGG(y0, y1, .(x0, x1)) → U2_GGG(y0, y1, .(x0, x1), U5_ag(x0, x1, member1_in_ag(x1)))
REACH_IN_GGG(y0, y1, .(x0, x1)) → U2_GGG(y0, y1, .(x0, x1), member1_out_ag(x0, .(x0, x1)))
member1_in_ag(.(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(.(H, L)) → U5_ag(H, L, member1_in_ag(L))
U5_ag(H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
member1_in_ag(x0)
U5_ag(x0, x1, x2)
U2_GGG(z0, z1, .(z2, z3), member1_out_ag(.(z0, .(x3, [])), .(z2, z3))) → REACH_IN_GGG(x3, z1, .(z2, z3))
U2_GGG(z0, z1, .(.(z0, .(x3, [])), z3), member1_out_ag(.(z0, .(x3, [])), .(.(z0, .(x3, [])), z3))) → REACH_IN_GGG(x3, z1, .(.(z0, .(x3, [])), z3))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
U2_GGG(z0, z1, .(z2, z3), member1_out_ag(.(z0, .(x3, [])), .(z2, z3))) → REACH_IN_GGG(x3, z1, .(z2, z3))
U2_GGG(z0, z1, .(.(z0, .(x3, [])), z3), member1_out_ag(.(z0, .(x3, [])), .(.(z0, .(x3, [])), z3))) → REACH_IN_GGG(x3, z1, .(.(z0, .(x3, [])), z3))
REACH_IN_GGG(y0, y1, .(x0, x1)) → U2_GGG(y0, y1, .(x0, x1), U5_ag(x0, x1, member1_in_ag(x1)))
REACH_IN_GGG(y0, y1, .(x0, x1)) → U2_GGG(y0, y1, .(x0, x1), member1_out_ag(x0, .(x0, x1)))
member1_in_ag(.(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(.(H, L)) → U5_ag(H, L, member1_in_ag(L))
U5_ag(H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
member1_in_ag(x0)
U5_ag(x0, x1, x2)
REACH_IN_GGG(x0, x1, .(.(y_4, .(y_5, [])), x3)) → U2_GGG(x0, x1, .(.(y_4, .(y_5, [])), x3), member1_out_ag(.(y_4, .(y_5, [])), .(.(y_4, .(y_5, [])), x3)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ NonTerminationProof
REACH_IN_GGG(x0, x1, .(.(y_4, .(y_5, [])), x3)) → U2_GGG(x0, x1, .(.(y_4, .(y_5, [])), x3), member1_out_ag(.(y_4, .(y_5, [])), .(.(y_4, .(y_5, [])), x3)))
U2_GGG(z0, z1, .(z2, z3), member1_out_ag(.(z0, .(x3, [])), .(z2, z3))) → REACH_IN_GGG(x3, z1, .(z2, z3))
U2_GGG(z0, z1, .(.(z0, .(x3, [])), z3), member1_out_ag(.(z0, .(x3, [])), .(.(z0, .(x3, [])), z3))) → REACH_IN_GGG(x3, z1, .(.(z0, .(x3, [])), z3))
REACH_IN_GGG(y0, y1, .(x0, x1)) → U2_GGG(y0, y1, .(x0, x1), U5_ag(x0, x1, member1_in_ag(x1)))
member1_in_ag(.(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(.(H, L)) → U5_ag(H, L, member1_in_ag(L))
U5_ag(H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
member1_in_ag(x0)
U5_ag(x0, x1, x2)
REACH_IN_GGG(x0, x1, .(.(y_4, .(y_5, [])), x3)) → U2_GGG(x0, x1, .(.(y_4, .(y_5, [])), x3), member1_out_ag(.(y_4, .(y_5, [])), .(.(y_4, .(y_5, [])), x3)))
U2_GGG(z0, z1, .(z2, z3), member1_out_ag(.(z0, .(x3, [])), .(z2, z3))) → REACH_IN_GGG(x3, z1, .(z2, z3))
U2_GGG(z0, z1, .(.(z0, .(x3, [])), z3), member1_out_ag(.(z0, .(x3, [])), .(.(z0, .(x3, [])), z3))) → REACH_IN_GGG(x3, z1, .(.(z0, .(x3, [])), z3))
REACH_IN_GGG(y0, y1, .(x0, x1)) → U2_GGG(y0, y1, .(x0, x1), U5_ag(x0, x1, member1_in_ag(x1)))
member1_in_ag(.(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(.(H, L)) → U5_ag(H, L, member1_in_ag(L))
U5_ag(H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))